

"Gene Editing Technology: Application in Agriculture and Regulations on Food Derived from Gene Editing Technology" 20 October 2021, Bangkok, Thailand (Online Seminar)

### Japanese handling policy of genomeedited organisms and their science communication

#### TABEI Yutaka (Ph.D.)

New Technology Promotion Section, Strategic Planning Headquarters, National Agriculture and Food Research Organization (NARO)

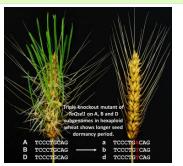
### Overview



- R&D of genome editing (GE) for agriculture and fishery fields in Japan
- 2. Regulatory framework for genome editing in Japan
  - Current framework for genetically modified organisms (GMO)
  - The regulatory framework for biodiversity influence by genome edited organisms
  - The regulatory framework for food safety of genome edited foods and food additives
  - How do we confirm null segregant?
- 3. Labeling policy of genome-edited foods
- 4. Promoting the Public Understanding of Genome editing

### Commercialization of tomato and red sea bream, and examples under development by genome editing in Japan




High GABA tomato



Low solanine potato



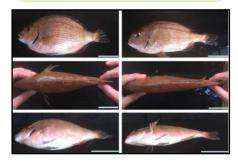
Alteration of seed dormancy in wheat



Left: Wild type Right: GE wheat

High yield rice




Skin color modified grape



Gentle Tuna



Thick red sea bream



Left: GE red sea bream Right: Wild type

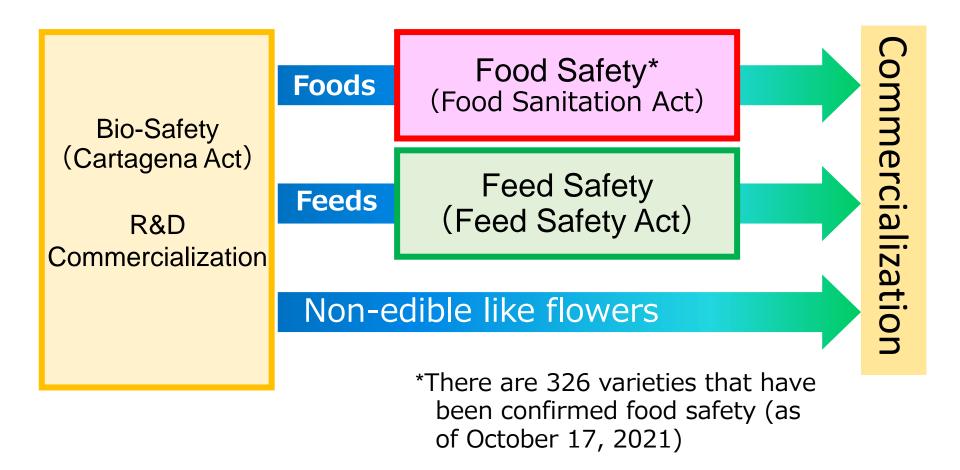
Appetite controlled puffer fish



Top: GE puffer fish Bottom: wild type

### Regulatory framework for GMO in Japan




| Safety Category | Legislation         |
|-----------------|---------------------|
| Bio-Safety      | Cartagena Act*      |
| Food Safety     | Food Sanitation Act |
| Feed Safety     | Feed Safety Act     |

- Handling of genome-edited (GE) organisms was discussed whether GMO regulations are applicable to GE products.
- The handling policies of genome-edited organisms have been established from the perspective of biodiversity impact, food and feed safety.

<sup>\*</sup> The law concerning the Conservation and Sustainable Use of Biological Diversity through Regulations on the Use of Living Modified Organisms

### Regulatory framework for GMO in Japan





### **Definition of GMO in Cartagena Act**



In this Act, "genetically modified organism and others" refers to an organism having a nucleic acid obtained by use of the following technology or a copy thereof.

- (i) Technology to process nucleic acid outside cells, which is specified by the ordinance of the competent ministry
- (ii) Technology to fuse cells of organisms belonging to different taxonomical families, as specified by the relevant ministry ordinance

GMO is defined as "the organism containing extracellularly processed nucleic acid or its replicate"

### **Definition of GMO in Food Sanitation Act**



Food Sanitation Act, Article 2(excerpt).

GM Food is defined as "the food including the organism which was obtained by recombinant DNA technique; the technique to generate recombinant DNA by cleavage/ligation, insert the DNA into living cell and multiply".

### Integrated Innovation Strategy in Japan



Cabinet Decision: June 15, 2018,

Clarify each handling policy for GE organisms and GE Foods under respective competent laws by the end of Mar 2019 and promote actions toward international harmonization.

Above decision accelerated the policy development.

New Biotech policy 2019 (draft)
Proposal from the Cabinet Office: June 11, 2019

Operation of the handling system for non-regulated GE organism/food should be discussed and finalized by March, 2021 in order to encourage appropriate use of GE technology.

### Progress in developing handling policies



2019/2 Basic Handling Policy of Genome-edited Organisms under the Cartagena Act by the Ministry of the Environment Basic the Handling Policy of Genome Edited Foods by the Ministry of 2019/3 Health, Labour and Welfare (MHLW) Handling Policy of Genome-edited Organisms in the Research Field by 2019/5 the Ministry of Education, Culture, Sports, Science and Technology 2019/6 Handling Policy of Genome-edited Organisms in the field of mining and industry by the Ministry of Economy, Trade and Industry 2019/9 Handling Policy of Genome Edited Foods by MHLW. Handling Policy of Genome-edited Organisms in the Field of Agriculture, 2019/10 Forestry and Fisheries Ministry of Agriculture, Forestry and Fisheries (MAFF) 2020/2 Handling Policy of Genome Edited Feed and Feed Additives by MAFF



# Handling of GE under Cartagena Act

Note: Cartagena Act is a regulation for bio-diversity of GMO

## Handling of GE organisms under Cartagena Act



Extracellularly processed nucleic acid was inserted

YES

Out of the scope of GMO regulation

The inserted DNA contains in the final product

YES

Regulated as GMO

(SDN-2 SDN-3)

### Cases GE is regulated as GMO



- Foreign gene (e.g. CRISPR/Cas-9) remains into a host genome or If we haven't confirmed that there are no foreign genes remaining.
  - However, null segregant of SDN-1 will be authorized as out of regulation after notification to competent authorities is accepted. Note: Developers should handle genome-edited organisms under regulated until the notifications are accepted.
- Genome-edited organism contains extracellularly processed nucleic acid or its replicate (SDN-2, 3.)
  - Because SDN-2 and SND-3 contain integrated-extracellularlyprocessed nucleic acid into the genome.
  - However self-cloning\* and natural occurrences \*\* are excluded from regulation of genetically modified organisms
- \*Self-cloning: Only the nucleic acid derived from an organism belonging to the same taxonomic species as the host are used.
- \*\*Natural occurrence: Only the nucleic acid derived from an organism belonging to sexually compatible under the nature conditions are used.

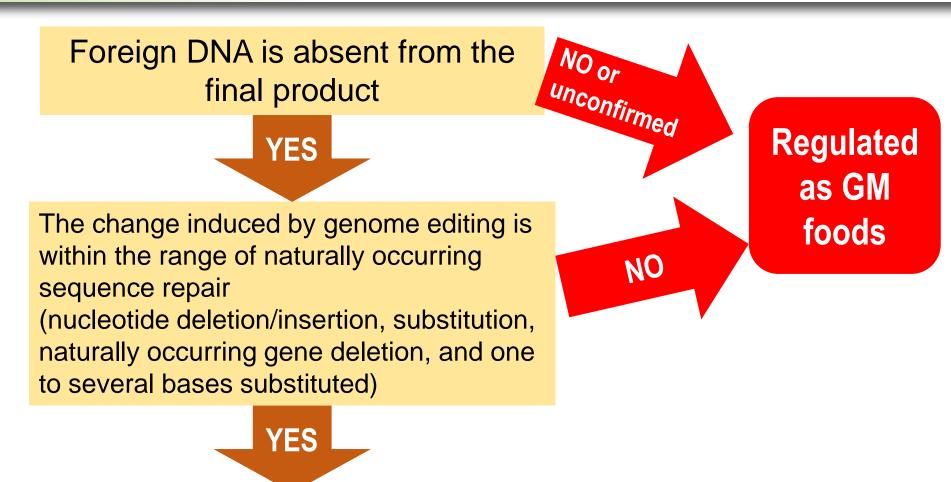
### Handling of non-regulated GE organism



Considering the purpose of the Convention on Biological Diversity and Cartagena Protocol on Biosafety,

- Request developers to submit a notice including the information such as development processes and no impact on biodiversity in order to accumulate knowledge regarding GE organisms.
- Disclose a part of the notified information, with attention to confidential information, on Japan Biosafety Clearing House website.
- Notification is not mandatory.
  - ✓ However, regulatory agencies strongly urge developers to submit the notification.

### 


- (a) The organism must <u>be confirmed to be free of residual</u> <u>nucleic acids or copies of nucleic acids</u> that have been processed outside the cell as defined in the Cartagena Act (including the basis for this)
- (b) The taxonomic species of the modified organism
- (c) The method of genome editing used for the alteration
- (d) The gene(s) that have been modified and the function of the gene(s)
- (e) Changes in the traits conferred by the modification
- (f) Whether or not there is any change in the trait other than(e) (and if so, the nature of the change)
- (g) The intended use of the organism
- (h) Consideration of the potential for biodiversity impact if the organism is used.



# Handling of GE under Food Sanitation Act

# Handling of GE foods and food additives under Food Sanitation Act



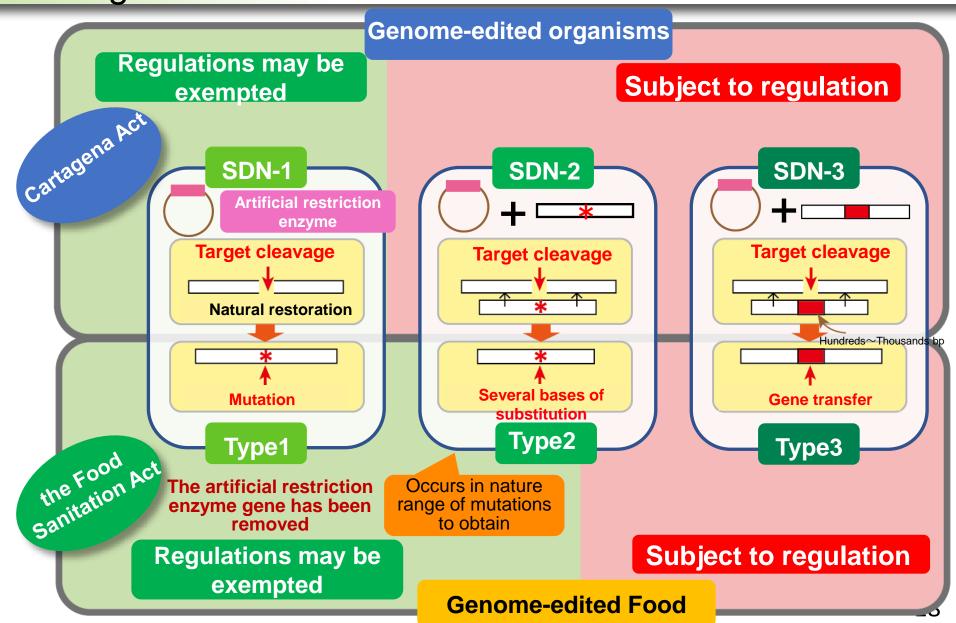


Out of the scope of GM regulation

### 

- ①Name and description of the food item/variety that was developed (method and purpose of use)
- 2 Method of genome editing technology used and details of the modification
- (3) <u>Information on the confirmation that there are no remaining foreign</u> <u>genes or their parts</u>.
- (4) Information on the confirmation that the confirmed DNA changes do not result in the production of new allergens that adversely affect human health or an increase in known toxic substances contained.
- (5) Information on changes in major components (limited to nutritional components) related to the target metabolic system, in the case of products that have been modified to affect the metabolic system in order to increase or decrease a specific component.
- 6 Date of launch (\*notified to the Ministry of Health, Labour and Welfare after launch)

### Handling of non-regulated GE Food




# Need to confirm that safety of genome edited foods is equivalent to that of conventional foods. Thus

- Request developers to submit a notice including the information such as development processes, in order to accumulate knowledge regarding genome-edited food.
- Disclose a part of the notified information, with attention to confidential information.
- Notification is not mandatory.
  - ✓ However, MHLW also strongly urges developers to submit the notification.

# Comparison of handling policies under Cartagena Act and the Food Sanitation Law





#### **Notification**



### Why does the regulatory agencies urge the notification even though it is not mandatory?

- Mandatory notification system cannot be set under the situation that non-regulated GE organisms are considered to be indistinguishable from organisms derived from conventional mutations.
- On the other hand, regulatory agencies need to keep track of development and commercialization of GE organisms because some people are worried about GE organisms and foods.
- If genome edited organisms containing foreign genes are marketed as null segregants, developers and regulatory agencies will lose their reliability from the public.
- Consultation with agencies prior to the notification shall be very important.

### How do we confirm null segregant



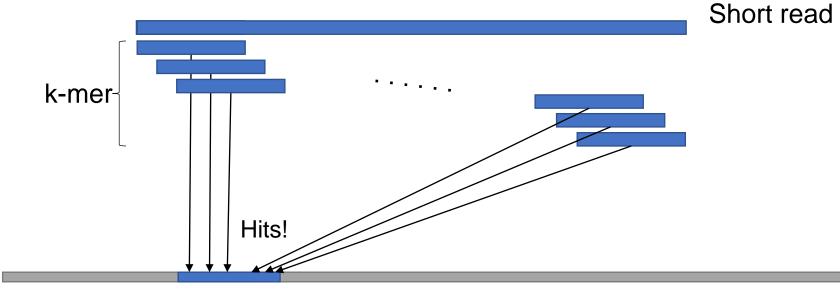
# Null Segregant is a prerequisite for exempting genome-edited organisms from regulation.

Southern blot analysis

PCR: Polymerase Chain Reaction

NGS: Next Generation Sequencing

# NGS-Kmers method Ito et al. (2020)


Foreign DNA detection by high-throughput sequencing to regulate genome-edited agricultural products.

Sci Rep Mar 18, 2020 ;10(1):4914. doi: 10.1038/s41598-020-61949-5.

### Detection of External DNA Sequences by Small Fragment Pattern Matching



- Obtain short reads of NGS from a sample applied by genome editing.
- Extract k-mers, the sequence of k nucleotides in length, from the reads.
- ◆If vector sequence remains in the progeny of genome editing, there should be some k-mers that match the vector sequence.



Vector sequence

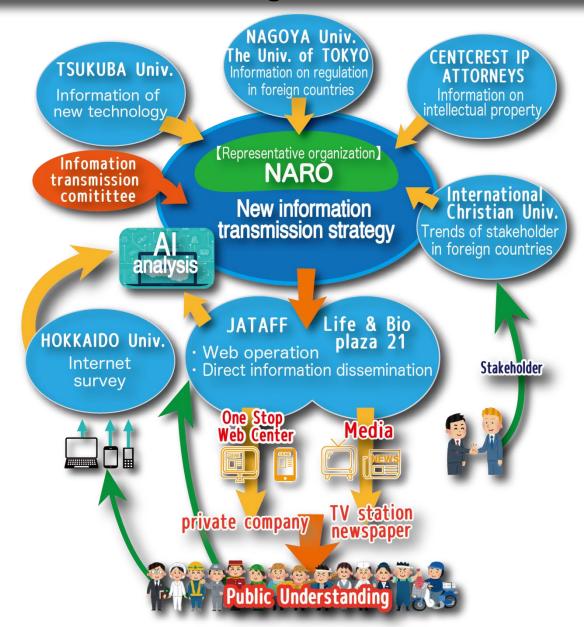
Itoh et al.(2020) Scientific reports https://doi.org/10.1038/s41598-020-61949-5

### Social Implementation of GE products



### Social Implementation

Regulation
Cartagena Act
Food Sanitation Act


Development cost (intellectual property etc.)

Public understanding

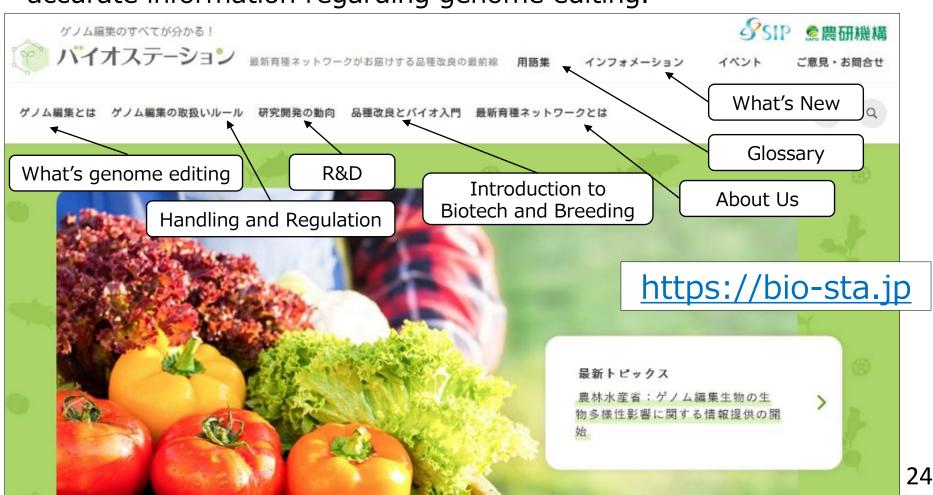
Development of superior GE crops/animals

# Promoting the Public Understanding of Genome editing





#### Measures


- Establishment of one-stop website for the information
- Whenever new information is posted on the website, it will be sent to those who have registered in advance.
- Research using AI for appropriate information and their distribution.

# Promoting the Public Understanding of Genome editing



#### **Communication**

We have created a website named "Bio-Station" to provide accurate information regarding genome editing.



### Non-target DNA mutations (Off-target)

DNA mutations induced by artificial restriction enzymes such as CRISPR recognizing and cleaving similar sequences other than the original target DNA sequence

# Such mutations can occur through natural mutations and mutagenesis as well



- History of utilizing unexpected mutations for breeding
- Possible to remove products having undesired edits
- Off-target mutation is not an issue in breeding

Human medical treatment

Possibility of causing unexpected effects, which should not happen in gene therapy etc.

Careful handling is required

Genome editing technology hardly causes off-target effects Researches have been being conducted all over the world to reduce off-target effects

### Labeling of Genome-edited Foods

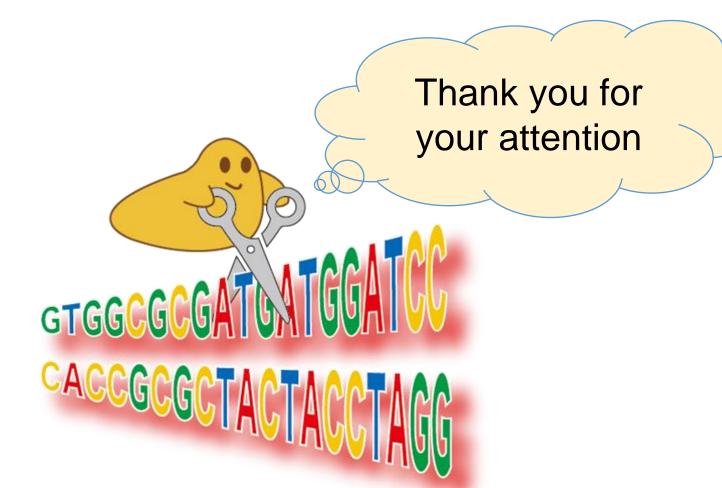


Sept. 2019, Consumer Affairs Agency (CAA) issues labeling policy on nonregulated genome-edited foods

Currently, it is not subject to the food labeling standards.

#### Reason for the policy

- ➤ It is scientifically impossible to distinguish whether a food with no residual exogenous genes was produced using genome editing technology or conventional breeding technology.
- In addition, there is currently an inadequate system of communication of information on food products using genome editing technology by means of documents such as records of transactions in Japan and abroad.
- However some consumers require labeling of genome-edited foods for selection.


In the future, CAA will consider reviewing the labeling policies as necessary after collecting information on distribution conditions and labeling systems in other countries as needed.

### Summary



- ➤ The Japanese government has clarified handling policy for genome-edited organisms, and genome-edited by 2020.
- Although these policies are not mandatory, prior consultation and information provision to regulatory authorities is strongly encouraged.
- ➤ In the Food Sanitation Act, the handling policy of subsequent hybrids of notified genome-edited crops and original crops is under discussion.
- Offspring bred by conventional breeding from genome-edited crops that have been fully notified are not regulated.
- ➤ The Consumer Affairs Agency has indicated that it will not require mandatory labeling for genome-edited foods.
- We have established an "information hub" for effective communication to the media, educational circles and others, and are promoting public understanding.



